Increased release of arachidonic acid and eicosanoids in iron-overloaded cardiomyocytes.
نویسندگان
چکیده
BACKGROUND Patients with transfusional iron overload may develop a life-limiting cardiomyopathy. The sensitivity of lipid-metabolizing enzymes to peroxidative injury, as well as the reported effects of arachidonic acid (AA) and metabolites on cardiac rhythm, led us to hypothesize that iron-overloaded cardiomyocytes display alterations in the release of AA and prostaglandins. METHODS AND RESULTS Neonatal rat ventricular myocytes (NRVMs) cultured for 72 hours in the presence of 80 microgram/mL ferric ammonium citrate displayed an increased rate of AA release, both under resting conditions and after stimulation with agonists such as [Sar(1)]Ang II. Although iron treatment did not affect overall incorporation of [(3)H]AA into NRVM phospholipids, it caused a 2-fold increase in the distribution of precursor in phosphatidylcholine species, with a proportional decrease in phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine. Increased release of AA in iron-overloaded NRVMs was reduced by the diacylglycerol lipase inhibitor RHC80267 but was largely insensitive to inhibitors of phospholipases A(2) and C. Iron-overloaded cardiomyocytes also displayed increased production of eicosanoids and induction of cyclooxygenase-2 after stimulation with interleukin-1alpha. CONCLUSIONS Iron overload enhances AA release and incorporation of AA into phosphatidylcholine, as well as cyclooxygenase-2 induction and eicosanoid production, in NRVMS: The effects of AA and metabolites on cardiomyocyte rhythmicity suggest a causal connection between these signals and electromechanical alterations in iron-overload-induced cardiomyopathy.
منابع مشابه
Stimulation of pregnant rat uterine contraction by the polychlorinated biphenyl (PCB) mixture aroclor 1242 may be mediated by arachidonic acid release through activation of phospholipase A2 enzymes.
The polychlorinated biphenyl (PCB) mixture Aroclor 1242 (A1242) increases frequency of contractions of pregnant rat uteri, suggesting a possible mechanism for decreased gestational age and increased spontaneous abortion in women and animals exposed to PCBs. In the present study, we hypothesized that A1242-induced stimulation of uterine contraction is mediated by arachidonic acid released by pho...
متن کاملGlucose-induced protein kinase C activity regulates arachidonic acid release and eicosanoid production by cultured glomerular mesangial cells.
Changes in glomerular eicosanoid production have been implicated in the development of diabetes-induced glomerular hyperfiltration and glomerular mesangial cells (GMC) are major eicosanoid-producing cells within the glomerulus. However, the mechanism for the effect of diabetes mellitus on glomerular mesangial eicosanoid production is unknown. The present study therefore examined whether elevate...
متن کاملElevated glucose alters eicosanoid release from porcine aortic endothelial cells.
Cultured porcine aortic endothelial cells were conditioned through two passages to mimic euglycemic and hyperglycemic conditions (5.2 mM, normal glucose; 15.6 mM, elevated glucose). After incubation with 1 microM [14C]arachidonic acid for 24 h, the cells were stimulated with 1 microM A23187 for times up to 30 min. Uptake of [14C]arachidonic acid and its distribution among cell lipids were unaff...
متن کاملFabrication of chitosan-hyaluronic acid nanoparticles and encapsulation into nanoparticles of dinitrosyl iron complexes as potential cardiological drugs
Objective(s): Currently, the development of nanoparticles for the stabilization and targeted delivery of cardiac drugs has gained significance. The present study aimed to develop nontoxic nanoparticles based on chitosan-hyaluronic acid (HA), encapsulate dinitrosyl iron complexes (DNICs, donors NO) into the nanoparticles to increase the stability and effectiveness of their action, and assess the...
متن کاملEicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders
Arachidonic acid (AA)-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of a wide variety of physiological responses and pathological processes, and control important cellular processes. AA can be converted into biologically active compounds by metabolism by cyclooxygenases (COX). Beneficial effect of COX-2 inhibitor celecoxib add-on therapy has been rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 103 19 شماره
صفحات -
تاریخ انتشار 2001